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Kinetic roughening in deposition with suppressed screening
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Models of irreversible surface deposition of k-mers on a linear lattice, with screening suppressed
by allowing only those overhangs that fully block small gaps, are studied by extensive Monte Carlo
simulations of the temporal and size dependence of the growing interface width. Despite earlier
findings that for such models the deposit density tends to increase away from the substrate, our
numerical results place them within the standard Kardar-Parisi-Zhang universality class.

PACS number(s): 68.10.Jy, 82.20.Wt

The standard, KPZ (Kardar-Parisi-Zhang) [1] model
of kinetic roughening of growing surfaces (reviewed, e.g.,
in [2,3]) yields the scaling prediction for the interfacial
width W as a function of time, T, and substrate size, L,

W~ L‘F(TL™?) , (1)

where for one-dimensional (1D) surfaces the exponent
values are

; (2)

CKPZ =

ZKPZ =

N w NI

3)

In fact, the value ( = 1/2 is common to many one-
dimensional (1D) models of fluctuating interfaces, sta-
tionary or growing. However, Eq. (3) is characteristic of
the KPZ universality class. For instance, for stationary,
thermally fluctuating interfaces, Eq. (3) is replaced by
z = 2. These values have been well established by nu-
merical simulations and are believed to be exact (in 1D).
The generic behavior of the scaling function F in (1) for
small arguments is power law as will be further discussed
later: see Egs. (7) and (8), etc. For large arguments, the
function F' approaches a constant.

In deposition, the KPZ approach focuses on fluctua-
tions of the growing surface which are determined by the
evolving structure of the uppermost deposit layers, which
are in the process of being formed due to arrival and ad-
hesion of particles according to the rules of a particular
model at hand. However, once the advancing surface
has passed each fixed height h (measured from the sub-
strate which is at h = 0), and once all the transient
rearrangement of particles (if allowed in the model) ran
its course, the remaining asymptotic (large-time), “satu-
rated” deposit density p(h) will be a function of h only.
[We only consider infinite-size substrates when discussing
p(h) here.]

A natural question to pose is to what extent does the
h dependence of p(h) keep “memory” of the interfacial
fluctuations from the time when the interface passed at
height A? In an interesting study [4], Krug and Meakin
argued that to the leading order, the KPZ fluctuations
affect the growth rate by introducing, in the average de-
posit density p(h) at the height A away from the sub-
strate, the contribution,
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Aprz ~ /\h—Z(l—C)/z . (4)

This expression applies for times T large enough so
that the density has reached its limiting value at h,
and assuming no finite-L effects, i.e., for infinite sub-
strates. The coefficient A > 0 is related to the nonlin-
ear growth term in the KPZ theory [1-3]. Specifically,
in 1D, this contribution suggests the coverage decreasing
to the limiting large-h value according to the power law
Ap = p(h) — p(c0) ~ h=2/3. The prediction Eq. (4) has
been verified for several ballistic deposition models in 1D
and 2D [4,5].

A recent study [6] of certain 1D models [7] with screen-
ing suppressed by disallowing overhangs in a manner to
be defined shortly, yielded a surprising conclusion that
in these models the density actually increases away from
the substrate according to the power law,

Ap = p(h) = p(c0) = —Ch™% (5)

where C > 0 and ¢ ~ 0.3. An interesting question,
thus, arises: are these models in a universality class dif-
ferent from KPZ? An alternative is that the KPZ contri-
bution to the density, Eq. (4), is possibly not seen because
the added mechanism of “compactification” due to sup-
pression of screening, elucidated in [6], yields the density
term Eq. (5) with negative exponent ¢ smaller in abso-
lute value than the KPZ-contribution exponent. Essen-
tially, this amounts to allowing for both terms: the one
displayed in Eq. (5), and also Apkpz(h) from Eq. (4)
added up to the right-hand side of Eq. (5). However,
in the 1D models of interest the KPZ contribution has
a larger-magnitude negative exponent, which makes it
a subleading correction difficult to detect by numerical
means.

As noted, the quantity p(h) was already studied exten-
sively in [6]. In this work, we report extensive numerical
simulations of the growing interface width. Our results
place the models under consideration [6,7], to be defined
in detail shortly, within the KPZ universality class. In
fact, the exponent values and scaling form, Egs. (1)-
(3), are confirmed quite accurately. Thus, we favor the
scenario whereby the suppression of screening does not
change the universality class of the growing interface fluc-
tuations even though it can dominate other aspects of the
deposit structure such as variation of the saturated de-
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posit density with height. In the latter, the KPZ fluctua-
tion effects are manifested but as a subleading correction.

We consider multilayer deposition of k-mer “particles”
on the linear lattice. The deposition attempts are “bal-
listic;” particles arrive at a uniform rate per site. The
group of those k lattice sites, which are targeted in each
deposition attempt, is examined to find the lowest layer
n > 1, such that all the k sites are empty in that layer
(and all layers above it). The deposition rules are il-
lustrated in Fig. 1. Note that initially the substrate is
empty, in all the sites and layers 1,2,3,... . If the tar-
geted group of sites is in the layer n = 1, then the particle
is deposited: the k sites become occupied. However, if
the targeted layer is n > 1, then the deposition attempt
is accepted only provided no gaps are thereby partially
covered in layer n — 1. Thus, successful deposition of a
k-mer in layer n > 1 requires that it fully covers any gap
underneath it in layer n — 1. This lower gap must there-
fore be of size 1,2,...,k — 1; see Fig. 1. Otherwise the
attempt is rejected.

In successful deposition, at least one of the lattice sites
below one of the end coordinates of the arriving k-mer
is already occupied in layer n — 1. The other end co-
ordinate has an occupied nearest neighbor lattice site in
layer n — 1, or is itself occupied (in layer n — 1). Note
that this deposition rule for dimers is the same as in [7].
For all &k = 2,3,... this rule was also used in [6] although
its explanation in [6] was unclear and in some places mis-
leading.

Thus, we disallow all overhangs which would partially
block (screen) gaps in lower layers. In particular, gaps
which are large enough to accommodate future deposi-
tion events (in layers n — 1 or lower) are k site or larger.

1

FIG. 1. Deposition of trimers on the 1D substrate. The
shaded trimers illustrate a possible configuration in layer n—1.
Lower layers (n — 2, n — 3, ...) are not shown. Instead, the
underlying lattice structure is indicated. Possible locations of
trimer arrival in a deposition attempt are illustrated. Gap a
of size 1 will be successfully covered by any overlaying trimer
(two out of the three possible locations are shown). Gap b
of size 4, however, cannot be blocked in any of the possi-
ble arrival positions: in four “partial overhang” cases (one
of which is shown) the deposition will be rejected (crossed
trimer). Two other configurations (one of which is shown by
an arrow-marked trimer) will result in deposition in a layer
lower than n. Deposition over gaps of size 0, marked c, is
always possible. For gaps of size 2, marked d, the success-
ful deposition configurations are those that fully cover this
gap. Both of them are shown, as is one of the two disallowed
configurations. Finally, gap of size 3, marked e, cannot be
fully covered. Therefore, the deposition will either be rejected
(crossed trimer) or occur in a lower layer (arrow-marked). We
note that head-on depositions (rightmost trimer), which in-
volve no gaps, are allowed as well by our rules.
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These gaps will not be blocked until they are filled up in
lower layers: The final, large-time configuration in each
layer contains gaps of at most £ — 1 consecutive empty
sites. In fact, deposition in lower layers 1,..., N is unaf-
fected by deposition in layers N + 1 on. For layer n = 1,
exact solution for the fraction of occupied sites and for
some correlation properties is known [8]; this problem
corresponds to monolayer random sequential adsorption
in 1D.

Motivation for considering simplified lattice models of
deposition with various screening mechanisms is due to
relevance to colloid deposition: see [12] and literature
cited therein. Indeed, in colloid experiments the deposi-
tion process is largely irreversible (no relaxation), while
a direct, experiment-based description of screening due
to particle-particle interactions in multilayer formation is
largely unavailable. One has to rely on phenomenolog-
ical modeling instead. Therefore, identification of uni-
versality classes with various screening mechanisms is of
interest. In our 1D model the screening is substantially
suppressed; only small gaps survive in the final deposit
morphology.

We studied the growth of the interfacial width in this
deposition process. Specifically, we define L as the num-
ber of sites in the lattice (and we use periodic boundary
conditions). The Monte Carlo (MC) time variable T' is
conveniently defined to have one deposition attempt per
lattice site per unit time. The heights of the deposit, h;,
at sites j = 1,..., L, were defined as the number of lay-
ers from the substrate to the last occupied layer, at each
lattice site j. The rms width was defined as

1 E 1 & 2 11/2

o (sG] o
i=1 j=1

where the average () over independent MC runs was

taken after calculating the square root.

Figure 2 presents results for large substrates, L = 2000.
These data, for T' < 200, were typically averaged over
1000 independent MC runs. There is no visible size effect
for L = 2000. Thus, Eq. (1) is replaced by

W~ T¢/? (L = ) , (7)

which corresponds to assuming that the scaling function
F(t) behaves according to ~ t¢/# for small arguments,
t=TL* . (8)
Least-squares fits of the data indicate that the expo-
nent in Eq. (7) tends to 1/3. For instance, for the largest-
T data, in the range 150 < T' < 200, we get 0.383, 0.345,
0.316, 0.304, 0.324, for k = 2, 3,5, 8, 10, respectively. Our
analyses were based on considering not just the values
thus obtained for several T' ranges, but also the trend as
the time was increased (i.e., the least-squares fits were
done for time intervals with both limits increasing). The
trend is generally towards 1/3. We propose a conserva-
tive exponent estimate,

¢/z=0.34+0.04 . (9)

Admittedly this range is quite wide. However, it is
comparable to the error limits in other similar large-scale
numerical studies and it comfortably excludes values such
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as 1/2 or 1/4, favoring the KPZ [1-3] prediction 1/3. We
also checked this estimate for several data sets taken at
L = 1000 and 1500. The results were unchanged. For
larger k, e.g., 10, the onset of the finite-L saturation can
be seen for L =0(1000).

Analysis of the finite-L properties was complicated by
two facts. First, to see finite-L saturation, simulations
had to be done for large times. Second, we found that the
statistical noise in the data became significant at satu-
ration. Thus averages over many independent runs were
required. We restricted our extensive MC runs to one
k value, k = 3. This value was favored because gener-
ally, other conditions being equal, the observed statistical
noise became larger as k increased. On the other hand,
the k = 3 large-L data in Fig. 2 yield an exponent closer
to 1/3 than the k = 2 data, suggesting, possibly, smaller
corrections to the leading scaling behavior.

Figure 3 shows well saturated data for k = 3 and lat-
tice sizes L = 20, 40, 60, 80, 100. These were averaged
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FIG. 2. (a) Data for k = 2,3,5,8,10 on substrates of size
L = 2000. For small T', Wi—2 < Wi=3 < --- < Wg=10. For
large T, the relation is reversed on the average, although the
differences, especially for k¥ = 8 and 10, are small and fluctu-
ate in sign, due to statistical noise. The solid line illustrates
slope 1/3. (b) To emphasize consistency with the slope 1/3
(illustrated by the dashed line), the largest-T data were re-
plotted on a finer scale. Note that the data for k = 10 were
marked by + symbols, while the data for other k values were
marked by o symbols.
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over typically 10000 MC runs. Shown are also data for
L = 300, averaged over 2000 MC runs, which have not
attained saturation for the largest times reached in the
simulation. The L = 2000 data from Fig. 2 are also in-
cluded for comparison.

The spread of the saturation values at larger T selected
to have only the statistical noise, is shown for L = 20,
40, 60, 80, 100 in Fig. 4. For large times, one assumes
F(t — o0) ~ const in Eq. (1), so that the width behaves
according to L'/2. From least-squares fits to various data
subsets for L = 40, 60, 80, 100, i.e., excluding the data
for L = 20, which seem to be too small to reach the true
asymptotic behavior, we propose the estimate,

¢=0.49+0.03 . (10)

As mentioned earlier, this exponent is the same for var-
ious 1D universality classes and it cannot be used to
identify the KPZ behavior. However, accurate verifica-
tion of the value 1/2 suggests that our data are generally
well within the asymptotic regime for lattice sizes above
0(40).

Thus, we also attempted the full scaling data collapse,
i.e., we checked that the quantity,

w=WL2% (11)

when plotted as a function of ¢ defined in Eq. (8), is
represented by a unique function F(¢); see Eq. (1). Of
course the data collapse is exact only in the limit L —
oo and T — oo, with fixed ¢t. Figure 5 illustrates the
“collapse” for k = 3, where we used data for L = 80,
100, 300, 2000, described earlier. We also included data
for L = 1000 which, together with the L = 2000 data,
yield the dense portion of the plot for w < 0.3 (see Fig. 5):
panel (a). This region was further enlarged on the log-log
plot: panel (b).

All the general expectations on the form of the scal-
ing function F'(t) are qualitatively confirmed by our data.
Specifically, it approaches a constant for large arguments.
The power-law behavior with exponent 1/3 for small ar-
guments is confirmed only semiquantitatively. Note that
the leftmost data in panel (b) of Fig. 5 does not satisfy
the condition T large, while the rightmost data fails the

InW
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FIG. 3. Data for k = 3 on substrates of sizes L = 20, 40, 60,
80, 100, 300, 2000. For fixed T, W (L) values monotonically
increase with L. Solid line illustrates slope 1/3.
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FIG. 4. Large-T data for k& = 3 on substrates of sizes
L = 20, 40, 60, 80, 100, illustrating the L dependence of
the saturation values (with the statistical noise). Solid line
illustrates slope 1/2.

condition ¢ small. Thus, only the central region, dense
data for L = 1000 and L = 2000, show the appropriate
asymptotic slope 1/3.

There are several extensive numerical studies of the
KPZ and other growth-universality classes by scaling
data collapse and tests of universality of quantities de-
rived from scaling functions similar to F(t); see, for in-
stance, [9-11]. The quality of our data is comparable to
other accurate verifications of the scaling predictions in
1D, though we found no results in the literature to allow
direct comparison with the scaling-function data such as
Fig. 5.

In summary, we found that, by extensive MC simula-
tions measuring directly the growing interface width, the
models with suppressed screening, which show unusual
density variation [6] are, in fact, described quite accu-
rately by the KPZ scaling form [1-3] typical of growing
interfaces, with the appropriate 1D exponent values. Af-
ter this work was completed, we learned of a new MC
study by Ko and Seno [13], of ballistic and other depo-
sition processes. Specifically, these authors question the
KPZ universality class identification for ordinary ballis-
tic deposition in 1D. While the details of the models are
different, we note that our central exponent values are
closer to KPZ than those reported in [13], while the er-
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FIG. 5. (a) Scaling data collapse according to Eq. (1), for
k = 3. The scaled width w is plotted as a function of the
scaled time ¢, for substrate sizes L = 80, 100, 300, 1000,
2000. (b) The region of small-w and small-t explored on the
log-log plot. The data sets for L = 80, 100, 300, 1000, 2000,
are marked, respectively, by %, o, x, @, +. The solid lines
indicate slopes 1/2, 1/3, 1/4.

ror limits are comparable.
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